Dans ce numéro...


Le Machine Learning, l’apprentissage des intelligences artificielles, en quelques mots, ses principes, ses modèles, ses applications.
Le machine learning (ou apprentissage automatique) et le deep learning (apprentissage profond) font partie des thèmes les plus actifs du moment : difficile de recenser tous les frameworks libres disponibles, lequel choisir pour votre projet ou pour remporter le prochain challenge Kaggle ?
Face à la complexité d’un ensemble de données, le data scientist commence par les scruter sous tous les angles. Cette analyse graphique permet parfois de mettre en évidence des relations entre différentes dimensions. Dans ces cas-là, il est alors tentant de quantifier cette relation. Parmi les outils à la disposition du data scientist, la régression linéaire est l’un des plus simples, dont nous allons voir qu’il ne permet pas uniquement de lier des données selon une relation linéaire.
Il existe une terrible malédiction à laquelle se heurte le data scientist : la malédiction de la dimension. Ce terrible fléau frappe lorsque le nombre de variables d’un ensemble de données devient trop important. Dans ce cas, afin de permettre une analyse précise dans chacune des dimensions, il faut un ensemble de mesures tout à fait gigantesque. De plus, la multiplication des dimensions rend l’analyse très complexe. Difficile pour un humain d’appréhender les relations entre autant de variables.
Avec Netflix, Quora, Amazon, Mangaki, les systèmes de recommandation sont omniprésents dans nos vies. Mais comment fonctionnent-ils ? Cet article présente les algorithmes principaux qui permettent de les concevoir. Nous en profitons pour décrire notre tout dernier algorithme utilisant les posters des œuvres pour améliorer les recommandations, présenté au workshop MANPU le 10 novembre 2017 à Kyoto, à l’occasion de la conférence International Conference on Document Analysis and Recognition (ICDAR).
Le ciel offre une variété étonnante d'objets célestes. Ces variétés ont fait l'objet depuis l'antiquité de classifications plus ou moins précises au fur et à mesure que les observations élargissaient le champ de nos connaissances. L'oeil et le cerveau humain ont su regrouper, expliquer et inventorier les éléments de l'Univers. Essayons alors d'utiliser la puissance du Machine Learning pour caractériser automatiquement ces galaxies lointaines et mystérieuses.
Les protéines sont des composants biologiques importants constitués par l'assemblage de briques élémentaires, les acides aminés. L'organisation tridimensionnelle d'une protéine est cependant difficile à prédire à partir de la succession d'acides aminés. Dans cet article, nous allons détailler une étape importante dans le processus de construction d'un modèle tridimensionnel, la prédiction d'éléments de structure secondaire remarquables.
Les molécules chimiques sont tout autour de nous, il y a bien entendu celles de synthèse qui font décrier la chronique, mais toute la communication du vivant est basée sur la chimie, à commencer par les odeurs. Comment traiter ces petits composés pourtant aussi importants ? Nous allons le découvrir dans cet article.

Magazines précédents

Sécurisez votre infrastructure Linux
GNU/Linux-Magazine Hors-série N°93
Sécurisez votre infrastructure Linux
Programmation réseau en Python
GNU/Linux-Magazine Hors-série N°90
Programmation réseau en Python
Maîtrisez la programmation de scripts Shell
GNU/Linux-Magazine Hors-série N°89
Maîtrisez la programmation de scripts Shell
Créez votre base de données MySQL MariaDB en 5 étapes
GNU/Linux-Magazine Hors-série N°88
Créez votre base de données MySQL MariaDB en 5 étapes

Les derniers articles Premiums

Les derniers articles Premium

Stubby : protection de votre vie privée via le chiffrement des requêtes DNS

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Depuis les révélations d’Edward Snowden sur l’espionnage de masse des communications sur Internet par la NSA, un effort massif a été fait pour protéger la vie en ligne des internautes. Cet effort s’est principalement concentré sur les outils de communication avec la généralisation de l’usage du chiffrement sur le web (désormais, plus de 90 % des échanges se font en HTTPS) et l’adoption en masse des messageries utilisant des protocoles de chiffrement de bout en bout. Cependant, toutes ces communications, bien que chiffrées, utilisent un protocole qui, lui, n’est pas chiffré par défaut, loin de là : le DNS. Voyons ensemble quels sont les risques que cela induit pour les internautes et comment nous pouvons améliorer la situation.

Surveillez la consommation énergétique de votre code

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Être en mesure de surveiller la consommation énergétique de nos applications est une idée attrayante, qui n'est que trop souvent mise à la marge aujourd'hui. C'est d'ailleurs paradoxal, quand on pense que de plus en plus de voitures permettent de connaître la consommation instantanée et la consommation moyenne du véhicule, mais que nos chers ordinateurs, fleurons de la technologie, ne le permettent pas pour nos applications... Mais c'est aussi une tendance qui s'affirme petit à petit et à laquelle à terme, il devrait être difficile d'échapper. Car même si ce n'est qu'un effet de bord, elle nous amène à créer des programmes plus efficaces, qui sont également moins chers à exécuter.

Donnez une autre dimension à vos logs avec Vector

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Avoir des informations précises et détaillées sur ce qu’il se passe dans une infrastructure, et sur les applications qu'elle héberge est un enjeu critique pour votre business. Cependant, ça demande du temps, temps qu'on préfère parfois se réserver pour d'autres tâches jugées plus prioritaires. Mais qu'un système plante, qu'une application perde les pédales ou qu'une faille de sécurité soit découverte et c'est la panique à bord ! Alors je vous le demande, qui voudrait rester aveugle quand l'observabilité a tout à vous offrir ?

Body