Utilisez la régression linéaire pour la prédiction

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
94
Mois de parution
janvier 2018
Spécialité(s)


Résumé
Face à la complexité d’un ensemble de données, le data scientist commence par les scruter sous tous les angles. Cette analyse graphique permet parfois de mettre en évidence des relations entre différentes dimensions. Dans ces cas-là, il est alors tentant de quantifier cette relation. Parmi les outils à la disposition du data scientist, la régression linéaire est l’un des plus simples, dont nous allons voir qu’il ne permet pas uniquement de lier des données selon une relation linéaire.

1. Dis-moi tout, et je te dirais qui tu es

L’apprentissage machine vise généralement deux buts : la classification et la prédiction. Le premier consiste à analyser un ensemble de données, et à attacher une étiquette à cet ensemble.

Il peut par exemple s’agir de données telles que le solde du compte courant d’un individu, ces derniers déplacements, son âge, l’âge de ses enfants, ses diplômes, son historique de navigation sur Internet, etc. Tout cela permettant de classer cet individu dans la catégorie « futur primo accédant » ou bien « futur optimiseur fiscal », etc.

Ou alors, cette classification peut travailler sur une image, et l’identifier comme étant celle d’un chat.

Le second but, la prédiction, est différent. Il s’agit dans ce cas de se baser sur un ensemble de données que l’on nomme prédicteurs, pour prédire une inconnue particulière.

Une application typique serait l’analyse du kilométrage d’une voiture, du type de trajet qu’elle...

Cet article est réservé aux abonnés. Il vous reste 97% à découvrir.
S'abonner à Connect
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez des listes de lecture et des contenus Premium
  • Consultez les nouveaux articles en avant-première
Je m'abonne


Article rédigé par

Par le(s) même(s) auteur(s)

Un bon framework IA, ça fait tout, c’est d’ailleurs à ça qu’on les reconnaît !

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Réussir un projet d’IA nécessite de maîtriser bien des aspects de la datascience, de la collecte des données au déploiement d’un modèle, en passant par la visualisation, le preprocessing, l’exploration, l’expérimentation... Disposer d’un bon framework n’est pas indispensable, mais ça aide bien.

Exploiter des modèles préentraînés

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Il existe en ligne quelques réseaux de neurones profonds, préentraînés, qui ouvrent la voie de l’utilisation de ces réseaux complexes, sans avoir recours à d’énormes fermes de calcul ni à de gigantesques bases de données qualifiées. Comment y accéder, les utiliser, et surtout les plier à nos besoins ? Nous verrons deux approches : le paradigme réseau de neurones et XGBoost.

Découvrez la programmation différentiable

Magazine
Marque
GNU/Linux Magazine
Numéro
246
Mois de parution
mars 2021
Spécialité(s)
Résumé

La programmation différentiable est une nouvelle façon de penser la programmation. Le principe consiste à considérer tout un programme comme une fonction qu’on puisse différentier, et donc optimiser. Nous allons construire dans cet article les outils de base pour ce faire, et présenter la librairie JAX, qui facilite la tâche.

Les derniers articles Premiums

Les derniers articles Premium

PostgreSQL au centre de votre SI avec PostgREST

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Dans un système d’information, il devient de plus en plus important d’avoir la possibilité d’échanger des données entre applications. Ce passage au stade de l’interopérabilité est généralement confié à des services web autorisant la mise en œuvre d’un couplage faible entre composants. C’est justement ce que permet de faire PostgREST pour les bases de données PostgreSQL.

La place de l’Intelligence Artificielle dans les entreprises

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

L’intelligence artificielle est en train de redéfinir le paysage professionnel. De l’automatisation des tâches répétitives à la cybersécurité, en passant par l’analyse des données, l’IA s’immisce dans tous les aspects de l’entreprise moderne. Toutefois, cette révolution technologique soulève des questions éthiques et sociétales, notamment sur l’avenir des emplois. Cet article se penche sur l’évolution de l’IA, ses applications variées, et les enjeux qu’elle engendre dans le monde du travail.

Petit guide d’outils open source pour le télétravail

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Ah le Covid ! Si en cette période de nombreux cas resurgissent, ce n’est rien comparé aux vagues que nous avons connues en 2020 et 2021. Ce fléau a contraint une large partie de la population à faire ce que tout le monde connaît sous le nom de télétravail. Nous avons dû changer nos habitudes et avons dû apprendre à utiliser de nombreux outils collaboratifs, de visioconférence, etc., dont tout le monde n’était pas habitué. Dans cet article, nous passons en revue quelques outils open source utiles pour le travail à la maison. En effet, pour les adeptes du costume en haut et du pyjama en bas, la communauté open source s’est démenée pour proposer des alternatives aux outils propriétaires et payants.

Sécurisez vos applications web : comment Symfony vous protège des menaces courantes

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Les frameworks tels que Symfony ont bouleversé le développement web en apportant une structure solide et des outils performants. Malgré ces qualités, nous pouvons découvrir d’innombrables vulnérabilités. Cet article met le doigt sur les failles de sécurité les plus fréquentes qui affectent même les environnements les plus robustes. De l’injection de requêtes à distance à l’exécution de scripts malveillants, découvrez comment ces failles peuvent mettre en péril vos applications et, surtout, comment vous en prémunir.

Les listes de lecture

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.
11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.
10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Voir les 66 listes de lecture

Abonnez-vous maintenant

et profitez de tous les contenus en illimité

Je découvre les offres

Déjà abonné ? Connectez-vous