La malédiction de la dimension

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
94
Mois de parution
janvier 2018
Spécialité(s)


Résumé

Il existe une terrible malédiction à laquelle se heurte le data scientist : la malédiction de la dimension. Ce terrible fléau frappe lorsque le nombre de variables d’un ensemble de données devient trop important. Dans ce cas, afin de permettre une analyse précise dans chacune des dimensions, il faut un ensemble de mesures tout à fait gigantesque. De plus, la multiplication des dimensions rend l’analyse très complexe. Difficile pour un humain d’appréhender les relations entre autant de variables.


1. Dans le vif du sujet

Partons bille en tête, et attaquons-nous à un problème résolu depuis longtemps, mais qui a fait histoire, puisqu’on en parle toujours. Il s’agit d’un problème de classification, que l’on doit à Ronald Fisher, et qu’il a utilisé en 1936 pour illustrer une nouvelle méthode de classification linéaire.

Cet exemple est basé sur un ensemble de données qui, pour 3 espèces d’iris différentes, rassemble quatre mesures différentes :

  • la longueur des sépales ;
  • la largeur des sépales ;
  • la longueur des pétales ;
  • la largeur des pétales.

Ce n’est certes pas un ensemble de très grande dimension, mais nous passons la dimension 3 : il est donc difficile de se représenter simplement cet ensemble.

1.1 L’approche brute force

Il reste néanmoins possible de tracer toutes les combinaisons de comparaisons deux à deux des variables de l’ensemble. La…

La suite est réservée aux abonnés. Il vous reste 96% à découvrir.
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez des listes de lecture et des contenus Premium
  • Consultez les nouveaux articles en avant-première
Envie de lire la suite ? Rejoignez Connect
Je m'abonne maintenant


Article rédigé par

Par le(s) même(s) auteur(s)

Un bon framework IA, ça fait tout, c’est d’ailleurs à ça qu’on les reconnaît !

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Réussir un projet d’IA nécessite de maîtriser bien des aspects de la datascience, de la collecte des données au déploiement d’un modèle, en passant par la visualisation, le preprocessing, l’exploration, l’expérimentation... Disposer d’un bon framework n’est pas indispensable, mais ça aide bien.

Exploiter des modèles préentraînés

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Il existe en ligne quelques réseaux de neurones profonds, préentraînés, qui ouvrent la voie de l’utilisation de ces réseaux complexes, sans avoir recours à d’énormes fermes de calcul ni à de gigantesques bases de données qualifiées. Comment y accéder, les utiliser, et surtout les plier à nos besoins ? Nous verrons deux approches : le paradigme réseau de neurones et XGBoost.

Découvrez la programmation différentiable

Magazine
Marque
GNU/Linux Magazine
Numéro
246
Mois de parution
mars 2021
Spécialité(s)
Résumé

La programmation différentiable est une nouvelle façon de penser la programmation. Le principe consiste à considérer tout un programme comme une fonction qu’on puisse différentier, et donc optimiser. Nous allons construire dans cet article les outils de base pour ce faire, et présenter la librairie JAX, qui facilite la tâche.

Les listes de lecture

Python niveau débutant

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.

Au pays des algorithmes

11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.

Analyse de données en Python

10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Plus de listes de lecture