Graphes géants creux : comment définir le centre du Web

Magazine
Marque
MISC
HS n°
Numéro
18
Mois de parution
novembre 2018
Spécialité(s)


Résumé

Les graphes, composés de sommets et d’arêtes sont des objets communs en mathématiques (et indispensables) en informatique. Lorsqu’on veut manipuler des graphes de plusieurs centaines de millions de sommets, voire de plusieurs milliards de sommets, comme le graphe du web (ou un sous-ensemble) ou le graphe de certains réseaux sociaux, les choses se compliquent singulièrement : la plupart des algorithmes « académiques » se heurtent au « mur » de la complexité en temps (voire en espace), que nous appellerons le mur du « Big Data ». Tout algorithme dont la complexité est de l’ordre de O(n³) ou même de l’ordre de O(n²) est en fait inutilisable en pratique (ou très coûteux) dès lors que n, le nombre de sommets, dépasse (disons) le milliard. Il faut alors suivre d’autres stratégies. Il faut par exemple accepter de ne pouvoir calculer qu’une approximation même si dans certains cas, cette approximation peut en fait être la valeur exacte.


Cet article se propose de présenter la stratégie dite des « sauts multiples » (multiple sweep) et certaines tactiques développées ces dernières années pour résoudre unproblème classique sur les graphes géants : le calcul du diamètre, du rayon et du centre d’un graphe non orienté. Nous finirons par discuter de la faisabilitéde résoudre le problème du calcul du diamètre, du rayon et du centre d’un célèbre graphe non orienté : le « graphe du web ».

1. Graphes

1.1 Dessine-moi un graphe

Un graphe, au sens mathématique, est une structure composée d'objets (les sommets ou les nœuds) dans laquelle certaines paires d'objets sont « liées » par des arcs (on dit arête dans le cas où ce lien est orienté). Ainsi, lorsque vous regardez un plan de métro, que ce soit à Londres ou à Paris, en fait vous regardez un graphe dont les sommets représentent les stations et les arcs représentent les trajets entre les sommets. Les graphes sont très présents...

Cet article est réservé aux abonnés. Il vous reste 96% à découvrir.
S'abonner à Connect
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez des listes de lecture et des contenus Premium
  • Consultez les nouveaux articles en avant-première
Je m'abonne
Références

[1] C. Magnien, M. Latapy et M. Habib, Fast Computation of Empirically Tight Bounds for the Diameter of Massive Graphs, ACM Journal of Experimental Algorithmics (JEA), 13, 2008. Disponible à https://www-complexnetworks.lip6.fr/~magnien/Publis/17diam/article.pdf

[2] C. Magnien,le code (en C) et des graphes géants : https://www-complexnetworks.lip6.fr/~magnien/Diameter/

[3T. Cormen, C. Leiserson et R. Rivest, Algorithmique - 3ème édition, 2010, Dunod.

[4V. D Blondel, J.-L . Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment (10), P10008, 2008.

[5] M. Lesk, Diamètre de graphes et qualité de service d’un réseau de données, Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle, tome 18, n°3 (1984), p. 247-261. Disponible : https://www.rairoro.org/articles/ro/pdf/1984/03/ro1984180302471.pdf

[6] https://www.newcastle.edu.au/__data/assets/pdf_file/0014/22460/06_Automatic-element-reordering-for-finite-element-analysis-with-frontal-solution-schemes.pdf

[7] L. Auroux, M. Burelle et R. Erra, Reordering Graphs For Fun & Profit, ISWAG 2015. Disponible : https://hal.archives-ouvertes.fr/hal-01171295/document

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Graph structure in the web, éditeur, 2003. Disponible à : https://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/broder.pdf

[9] R. Albert, H. Jeong, et A.-L. Barabasi,Diameter of the World Wide Web, Nature 401: 130-131, Sept. 1999.

[10] L. Backstrom, P. Boldi, M. Rosa, J. Ugander et S. Vigna, Four Degrees of Separation, 2012. Disponible à : https://arxiv.org/pdf/1111.4570.pdf

[11] P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, A. Marino, Finding the diameter in real-world graphs: experimentally turning a lower bound into an upper bound, Proc. ESA, LNCS, vol. 6346, 2010, p. 302–313.

[12] P. Crescenzi, R. Grossi, L. Lanzi, A. Marino, On Computing the Diameter of Real-World Directed (Weighted) Graphs, SEA : Experimental Algorithms, p. 99-110, Springer, 2012.

[13] P. Crescenzi, R. Grossi, M. Habib, L. Lanzi, A. Marino, On computing the diameter of real-world undirected graphs, Theoretical Computer Science, 514 pp 84–95, 2013.

[14] T. AkibaYoichi et I. Kawata, An Exact Algorithm for Diameters of Large Real Directed Graphs, SEA : Experimental Algorithms, p. 56-67, Springer, 2015.

[15] F. W. Takes et W. A. Kosters, Computing the Eccentricity Distribution of Large Graphs, Algorithms, 2013, 6, 100-118.

[16] https://neo4j.com/blog/analyzing-panama-papers-neo4j/



Article rédigé par

Par le(s) même(s) auteur(s)

Entretien avec Julien Cornebise, expert en Machine Learning

Magazine
Marque
MISC
HS n°
Numéro
18
Mois de parution
novembre 2018
Spécialité(s)
Résumé

Julien Cornebise est un expert francophone du Machine Learning qui a été l’un des premiers chercheurs de DeepMind, entreprise connue pour avoir notamment développé AlphaGo (une IA qui battra les meilleurs joueurs de Go au monde). Il a accepté de répondre à nos questions afin de nous faire découvrir le parcours d’un chercheur en Machine Learning.

Machine Learning : un (rapide) tour d’horizon

Magazine
Marque
MISC
HS n°
Numéro
18
Mois de parution
novembre 2018
Spécialité(s)
Résumé

Le Machine Learning (ML) qu’on peut traduire par apprentissage automatique ou apprentissage machine (ou encore apprentissage statistique il y a encore quelques années) est catalogué comme une des 10 technologies de rupture par la Technology Review, célèbre revue du MIT. Devenue une expression fétiche il semble qu’aucun domaine ne va y échapper et il était inévitable que la sécurité s’y intéresse, reste à le faire de manière intelligente. Nous nous proposons dans cet article de faire un tour d’horizon des possibilités qu’offre le ML. Cet article devrait vous aider à faire vos premiers pas, à comprendre plus facilement les articles de ce hors-série et enfin, à permettre au lecteur d’évaluer l’intérêt d’une solution de sécurité qui se vante de faire du ML.

Les derniers articles Premiums

Les derniers articles Premium

Stubby : protection de votre vie privée via le chiffrement des requêtes DNS

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Depuis les révélations d’Edward Snowden sur l’espionnage de masse des communications sur Internet par la NSA, un effort massif a été fait pour protéger la vie en ligne des internautes. Cet effort s’est principalement concentré sur les outils de communication avec la généralisation de l’usage du chiffrement sur le web (désormais, plus de 90 % des échanges se font en HTTPS) et l’adoption en masse des messageries utilisant des protocoles de chiffrement de bout en bout. Cependant, toutes ces communications, bien que chiffrées, utilisent un protocole qui, lui, n’est pas chiffré par défaut, loin de là : le DNS. Voyons ensemble quels sont les risques que cela induit pour les internautes et comment nous pouvons améliorer la situation.

Surveillez la consommation énergétique de votre code

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Être en mesure de surveiller la consommation énergétique de nos applications est une idée attrayante, qui n'est que trop souvent mise à la marge aujourd'hui. C'est d'ailleurs paradoxal, quand on pense que de plus en plus de voitures permettent de connaître la consommation instantanée et la consommation moyenne du véhicule, mais que nos chers ordinateurs, fleurons de la technologie, ne le permettent pas pour nos applications... Mais c'est aussi une tendance qui s'affirme petit à petit et à laquelle à terme, il devrait être difficile d'échapper. Car même si ce n'est qu'un effet de bord, elle nous amène à créer des programmes plus efficaces, qui sont également moins chers à exécuter.

Donnez une autre dimension à vos logs avec Vector

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Avoir des informations précises et détaillées sur ce qu’il se passe dans une infrastructure, et sur les applications qu'elle héberge est un enjeu critique pour votre business. Cependant, ça demande du temps, temps qu'on préfère parfois se réserver pour d'autres tâches jugées plus prioritaires. Mais qu'un système plante, qu'une application perde les pédales ou qu'une faille de sécurité soit découverte et c'est la panique à bord ! Alors je vous le demande, qui voudrait rester aveugle quand l'observabilité a tout à vous offrir ?

Les listes de lecture

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.
11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.
10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Voir les 61 listes de lecture

Abonnez-vous maintenant

et profitez de tous les contenus en illimité

Je découvre les offres

Déjà abonné ? Connectez-vous