Analyse des sentiments avec le Deep Learning

Magazine
Marque
MISC
HS n°
Numéro
18
Mois de parution
novembre 2018
Spécialité(s)


Résumé

Les progrès réalisés cette dernière décennie en Deep Learning ont profité à plusieurs domaines, ce qui lui a permis de s’imposer comme une approche incontournable en Machine Learning. La classification automatique des documents textuels est l’une des tâches dans laquelle le Deep Learning s’avère particulièrement utile et performant. Dans cet article, nous allons présenter en détail les aspects théoriques et pratiques liés à l’implémentation d’un système d’analyse des sentiments. Il s’agit de la classification automatique de tweets en trois classes : positive, négative ou neutre.


1. Introduction

Plusieurs entreprises s’intéressent aux avis des clients sur leurs produits et services. L’analyse des sentiments est une approche permettant de détecter automatiquement les émotions des clients à partir des commentaires postés sur les réseaux sociaux. Le but du travail présenté dans cet article est d’implémenter un réseau de neurones profond pour détecter automatiquement la polarité d’un tweet. À partir des données étiquetées/labellisées (c’est-à-dire que chaque tweet est accompagné d’une étiquette : positive, négative ou neutre), l’apprentissage d’un réseau de neurones permet de construire un modèle (une fonction mathématique) qui servira par la suite à prédire de nouvelles données (i.e. des tweets non vus lors de la phase d’apprentissage). Nous utilisons le corpus US Twitter Airline disponible sur le lien [1].

 

image_1

 

Fig. 1 : Aperçu global du système d’analyse des sentiments.

La figure 1 donne...

Cet article est réservé aux abonnés. Il vous reste 97% à découvrir.
S'abonner à Connect
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez des listes de lecture et des contenus Premium
  • Consultez les nouveaux articles en avant-première
Je m'abonne


Article rédigé par

Les derniers articles Premiums

Les derniers articles Premium

Présentation de Kafka Connect

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Un cluster Apache Kafka est déjà, à lui seul, une puissante infrastructure pour faire de l’event streaming… Et si nous pouvions, d’un coup de baguette magique, lui permettre de consommer des informations issues de systèmes de données plus traditionnels, tels que les bases de données ? C’est là qu’intervient Kafka Connect, un autre composant de l’écosystème du projet.

Le combo gagnant de la virtualisation : QEMU et KVM

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

C’est un fait : la virtualisation est partout ! Que ce soit pour la flexibilité des systèmes ou bien leur sécurité, l’adoption de la virtualisation augmente dans toutes les organisations depuis des années. Dans cet article, nous allons nous focaliser sur deux technologies : QEMU et KVM. En combinant les deux, il est possible de créer des environnements de virtualisation très robustes.

Brève introduction pratique à ZFS

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Il est grand temps de passer à un système de fichiers plus robuste et performant : ZFS. Avec ses fonctionnalités avancées, il assure une intégrité des données inégalée et simplifie la gestion des volumes de stockage. Il permet aussi de faire des snapshots, des clones, et de la déduplication, il est donc la solution idéale pour les environnements de stockage critiques. Découvrons ensemble pourquoi ZFS est LE choix incontournable pour l'avenir du stockage de données.

Générez votre serveur JEE sur-mesure avec Wildfly Glow

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Et, si, en une ligne de commandes, on pouvait reconstruire son serveur JEE pour qu’il soit configuré, sur mesure, pour les besoins des applications qu’il embarque ? Et si on pouvait aller encore plus loin, en distribuant l’ensemble, assemblé sous la forme d’un jar exécutable ? Et si on pouvait même déployer le tout, automatiquement, sur OpenShift ? Grâce à Wildfly Glow [1], c’est possible ! Tout du moins, pour le serveur JEE open source Wildfly [2]. Démonstration dans cet article.

Les listes de lecture

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.
11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.
10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Voir les 132 listes de lecture

Abonnez-vous maintenant

et profitez de tous les contenus en illimité

Je découvre les offres

Déjà abonné ? Connectez-vous