Automeans, ou comment éviter le « k par k » avec K-means

Magazine
Marque
MISC
HS n°
Numéro
18
Mois de parution
novembre 2018
Spécialité(s)


Résumé

Nous voulons (par exemple) classifier un jeu de données très grand, disons quelques millions de données, voire quelques milliards, mais non labellisées. Face au problème, l’algorithme K-means semblait un bon candidat. Il s'agit d'un des grands classiques des algorithmes du Machine Learning qui comporte cependant un défaut : il est nécessaire de lui donner k, le nombre de clusters (c’est ce qu’on appelle un « hyperparamètre »). Quand cette valeur optimale est inconnue, il est coûteux de trouver une bonne approximation, surtout sur un très grand jeu de données. Pour pallier à ce problème, nous avons développé un nouvel algorithme : Automeans, cet algorithme calcule le nombre « optimal » de clusters.


L’utilisation du Machine Learning dans le cadre de la sécurité n’est pas nouvelle, l’article [1] date de 2011. Désormais, ces techniques sont étudiées pour repérer des attaques, détecter des malwares, identifier des familles de malwares, etc. Voir l’article de S. Larinier dans ce hors-série.

Notre étude s’est faite dans le cadre de la classification de malwares. De nombreux travaux ont déjà été effectués dans ce domaine, voir[8] pour des références. Pour notre étude, nous voulons nous placer dans un cadre le plus proche possible d’une étude réelle. Nous nous plaçons donc à large échelle (millions de fichiers) : nous sommes face à un grand ensemble de malwares inconnus et non labellisés.

L'objectif est de faire un prétraitement de ce large ensemble de malwares pour avoir une première partition rapidement sans toutefois négliger la qualité. De cette partition, on peut récupérer des grandes familles ou approfondir notre analyse. Des...

Cet article est réservé aux abonnés. Il vous reste 96% à découvrir.
S'abonner à Connect
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez chaque semaine un nouvel article premium
  • Consultez les nouveaux articles en avant-première
Je m'abonne


Article rédigé par

Les derniers articles Premiums

Les derniers articles Premium

Cryptographie : débuter par la pratique grâce à picoCTF

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

L’apprentissage de la cryptographie n’est pas toujours évident lorsqu’on souhaite le faire par la pratique. Lorsque l’on débute, il existe cependant des challenges accessibles qui permettent de découvrir ce monde passionnant sans avoir de connaissances mathématiques approfondies en la matière. C’est le cas de picoCTF, qui propose une série d’épreuves en cryptographie avec une difficulté progressive et à destination des débutants !

Game & Watch : utilisons judicieusement la mémoire

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Au terme de l'article précédent [1] concernant la transformation de la console Nintendo Game & Watch en plateforme de développement, nous nous sommes heurtés à un problème : les 128 Ko de flash intégrés au microcontrôleur STM32 sont une ressource précieuse, car en quantité réduite. Mais heureusement pour nous, le STM32H7B0 dispose d'une mémoire vive de taille conséquente (~ 1,2 Mo) et se trouve être connecté à une flash externe QSPI offrant autant d'espace. Pour pouvoir développer des codes plus étoffés, nous devons apprendre à utiliser ces deux ressources.

Raspberry Pi Pico : PIO, DMA et mémoire flash

Magazine
Marque
Contenu Premium
Spécialité(s)
Résumé

Le microcontrôleur RP2040 équipant la Pico est une petite merveille et malgré l'absence de connectivité wifi ou Bluetooth, l'étendue des fonctionnalités intégrées reste très impressionnante. Nous avons abordé le sujet du sous-système PIO dans un précédent article [1], mais celui-ci n'était qu'une découverte de la fonctionnalité. Il est temps à présent de pousser plus loin nos expérimentations en mêlant plusieurs ressources à notre disposition : PIO, DMA et accès à la flash QSPI.

Les listes de lecture

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.
11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.
10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Voir les 108 listes de lecture

Abonnez-vous maintenant

et profitez de tous les contenus en illimité

Je découvre les offres

Déjà abonné ? Connectez-vous