Captch me if you can!... jouons avec Keras et les captchas

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
106
Mois de parution
janvier 2020
Spécialité(s)


Résumé

La librairie Keras rend possible en quelques lignes la création de réseaux convolutifs, dont les possibilités en matière de reconnaissance d’objets sont spectaculaires.


Il y a quelques semaines, Google a découvert, en appliquant ses algorithmes d’analyse d’images à sa base d’œuvres d’art scannées à haute résolution, que la naissance de Vénus de Botticelli contenait une fée ! Ce détail, malgré le nombre considérable de paires d’yeux humains s’étant posées sur la toile du maître, nous a été révélé par une intelligence artificielle. La vision et la reconnaissance d’objets ne sont plus l’apanage de l’Homme. Les réseaux convolutifs datant des années 90, il n’y a là rien de fondamentalement nouveau. Ce qui est fantastique, c’est que la puissance de ces approches est accessible à tous, grâce au cloud computing, et à des librairies haut niveau comme Keras.

1. La détection d’objets

Au début des années 2000, les travaux de Yann Lecun sur les réseaux convolutifs étant encore relativement frais, et la puissance de calcul à disposition étant très limités, la reconnaissance d’objets dans une image passait par l…

La suite est réservée aux abonnés. Il vous reste 96% à découvrir.
  • Accédez à tous les contenus de Connect en illimité
  • Découvrez des listes de lecture et des contenus Premium
  • Consultez les nouveaux articles en avant-première
Envie de lire la suite ? Rejoignez Connect
Je m'abonne maintenant


Article rédigé par

Par le(s) même(s) auteur(s)

Exploiter des modèles préentraînés

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Il existe en ligne quelques réseaux de neurones profonds, préentraînés, qui ouvrent la voie de l’utilisation de ces réseaux complexes, sans avoir recours à d’énormes fermes de calcul ni à de gigantesques bases de données qualifiées. Comment y accéder, les utiliser, et surtout les plier à nos besoins ? Nous verrons deux approches : le paradigme réseau de neurones et XGBoost.

Un bon framework IA, ça fait tout, c’est d’ailleurs à ça qu’on les reconnaît !

Magazine
Marque
GNU/Linux Magazine
HS n°
Numéro
117
Mois de parution
novembre 2021
Spécialité(s)
Résumé

Réussir un projet d’IA nécessite de maîtriser bien des aspects de la datascience, de la collecte des données au déploiement d’un modèle, en passant par la visualisation, le preprocessing, l’exploration, l’expérimentation... Disposer d’un bon framework n’est pas indispensable, mais ça aide bien.

Découvrez la programmation différentiable

Magazine
Marque
GNU/Linux Magazine
Numéro
246
Mois de parution
mars 2021
Spécialité(s)
Résumé

La programmation différentiable est une nouvelle façon de penser la programmation. Le principe consiste à considérer tout un programme comme une fonction qu’on puisse différentier, et donc optimiser. Nous allons construire dans cet article les outils de base pour ce faire, et présenter la librairie JAX, qui facilite la tâche.

Les listes de lecture

Python niveau débutant

9 article(s) - ajoutée le 01/07/2020
Vous désirez apprendre le langage Python, mais ne savez pas trop par où commencer ? Cette liste de lecture vous permettra de faire vos premiers pas en découvrant l'écosystème de Python et en écrivant de petits scripts.

Au pays des algorithmes

11 article(s) - ajoutée le 01/07/2020
La base de tout programme effectuant une tâche un tant soit peu complexe est un algorithme, une méthode permettant de manipuler des données pour obtenir un résultat attendu. Dans cette liste, vous pourrez découvrir quelques spécimens d'algorithmes.

Analyse de données en Python

10 article(s) - ajoutée le 01/07/2020
À quoi bon se targuer de posséder des pétaoctets de données si l'on est incapable d'analyser ces dernières ? Cette liste vous aidera à "faire parler" vos données.
Plus de listes de lecture