Les articles de GNU/Linux Magazine Hors-Série N°78

Image promotionnelle
Stockage et exploitation : des données aux « big data »
Article mis en avant

Préface

Pour le meilleur et pour le pire, nous vivons dans un monde de données. Que cela soit bénéfique ou néfaste, suivant l'origine des données ou leur utilisation, nous n'y pouvons rien changer, c'est un fait : nous produisons de plus en plus de données. Comme ce fait ne peut être modifié, nous devons nous adapter, adapter nos comportements et nos outils pour pouvoir stocker et traiter une telle masse d'informations.

Lorsque l'on travaille avec des données, il ne suffit pas de les acquérir et de les stocker, il faut également être capable de les faire « parler ». Plus la masse d'informations augmente, plus les techniques de stockage et de traitement doivent être efficaces ; mais faut-il pour autant inventer un nouveau nom pour qualifier ces données ?
Hadoop est un framework permettant la création d'applications distribuées (potentiellement sur des grappes de plusieurs milliers de serveurs) et pouvant supporter de grosses montées en charge afin de traiter des volumes de données de l'ordre du petaoctet. Il est structuré autour de plusieurs composants que nous présenterons.
HBase est une base de données orientée colonnes conçue pour fonctionner de manière distribuée au-dessus du système de fichiers HDFS.Comme de nombreux produits issus de l'écosystème Hadoop, elle est inspirée de travaux menés par Google, en l'occurrence BigTable.
Que ce soit à des fins statistiques, marketing, ou encore plus simplement pour la recherche scientifique, nos systèmes d'information doivent constamment stocker un nombre impressionnant de données, souvent de plusieurs téraoctets, tout en garantissant non seulement un temps d'accès défiant toute concurrence, mais aussi permettre de retrouver un échantillon ou un sous-ensemble de ces données tout aussi rapidement. Dans cet article, nous allons étudier comment Infinispan [1] permet d'implémenter de puissantes fonctions de recherche, à l'aide de l'une de ses récentes fonctionnalités de requête (« Query » [2]).
En ces années « Big Data », ce n'est pas seulement la taille ou la quantité de données qui représente un nouveau défi, mais aussi leur nature. En effet, que ce soit pour des raisons techniques de tenue de charge ou par souci de simplicité, les données sont sauvegardées dans de plus en plus de systèmes différents. Si l'on pouvait, au début des années 2000, estimer que nos données applicatives seraient stockées, la plupart du temps, dans une base de données relationnelle, ou éventuellement extraites d'un système historique (mainframe), le paysage a assez radicalement changé.
Le data mining est un ensemble de techniques mathématiques et algorithmiques pour extraire de l'information d'un jeu de données. Tandis que la statistique classique s'attache à décrire et expliquer les données, le data mining vise à découvrir des motifs et des structures dans les données pour éventuellement générer des prédictions. Nous allons voir dans cet article les bases théoriques du data mining, et plus particulièrement de l'apprentissage automatique, ainsi que leur mise en application avec la librairie Python scikit-learn.
Cet article vous propose une rapide introduction au langage R. Celui-ci permet d'effectuer des analyses statistiques sur de gros ensembles de données. Après quelques mots sur l'installation de ce langage, nous évoquerons quelques statistiques réalisables sous R.
VisPy est une librairie Python de visualisation scientifique spécialisée dans les importants volumes de données et la 3D. VisPy utilise la puissance du processeur graphique (GPU) à l'aide de la librairie OpenGL pour afficher efficacement et de manière interactive des données volumineuses et complexes. Cet article propose une vue d'ensemble de VisPy pour la visualisation interactive de données.