Réseaux de Neurones Convolutifs : un cortex visuel virtuel pour la reconnaissance d'image

Magazine
Marque
GNU/Linux Magazine
Numéro
230
Mois de parution
octobre 2019
Domaines


Résumé

Plusieurs articles, voire des hors-séries entiers dédiés de votre magazine favori, ont traité différents aspects du Deep Learning et du Machine Learning ou plus exactement, l'apprentissage profond et l'apprentissage automatique [1-6]. Cependant, trop peu d'articles expliquent et détaillent l'élaboration, ainsi que la construction elle-même, d'un réseau de neurones convolutifs, quelle qu'en soit l'application : la reconnaissance d'image, par exemple. Dans cet article, nous allons pallier ce manque en construisant un cortex visuel virtuel, ayant pour but la reconnaissance d'image ou d'objets.


Il existe une multitude d'algorithmes permettant la reconnaissance d'image et/ou d'objets, utilisant ou non les réseaux de neurones convolutifs, dont certains ont fait l'objet de quelques pages dans votre magazine [7-8]. La reconnaissance d'image classique repose sur l'utilisation de caractéristiques particulières appelées features, par exemple les descripteurs SIFT, SURF, BRIEF, ORB... Dans un tel cadre, il est donc indispensable de définir non seulement le ou les descripteurs à utiliser, mais également la manière de les employer et de les exploiter suivant l'application, avec par exemple des classificateurs du type Haar Cascade pour la reconnaissance faciale [7]. L'inconvénient de cette méthode est, bien que pouvant être très efficace, la nécessité du choix de descripteurs adaptés à l'application.

C'est là où les réseaux de neurones convolutifs interviennent. Ces derniers ont l'avantage de détecter et d'extraire automatiquement des caractéristiques propres...

Cet article est réservé aux abonnés. Il vous reste 97% à découvrir.
à partir de 21,65€ HT/mois/lecteur pour un accès 5 lecteurs à toute la plateforme
J'en profite


Articles qui pourraient vous intéresser...

Intelligence artificielle : la grande méprise

Magazine
Marque
Linux Pratique
Numéro
118
Mois de parution
mars 2020
Domaines
Résumé

Que ce soit dans les salons professionnels, la presse spécialisée ou même les publicités adressées au grand public, on n’échappe pas à l’intelligence artificielle. Pourtant, derrière ce terme, finalement très fourre-tout, il existe une véritable science. Mais entre l’état de l’art et ce qui existe réellement, il y a une différence qui change la donne.

AlphaFold, la réponse au problème le plus complexe de l'univers ?

Magazine
Marque
GNU/Linux Magazine
Numéro
234
Mois de parution
février 2020
Domaines
Résumé

Avec l’avènement de la biologie moléculaire au XXe siècle, l’homme a pris conscience qu’il pouvait utiliser le vivant pour l’étudier, puis pour le modifier. Le défi du XXIe siècle va porter sur l’utilisation intelligente de ce savoir pour accélérer l’évolution, et produire des nano machines, les protéines, capables de corriger tous les problèmes que nous avons engendrés. Mais pour cela, il faut répondre au problème le plus complexe de l’univers...

Réalisez vos deepfakes avec les réseaux génératifs antagonistes

Magazine
Marque
GNU/Linux Magazine
Numéro
234
Mois de parution
février 2020
Domaines
Résumé

Parmi les applications du moment les plus décriées de l'intelligence artificielle figurent celles qui consistent à falsifier des supports multimédias (vidéos, images ou bandes sons...) dont il est de plus en plus difficile de savoir s'il s'agit d'un support orignal ou corrompu. Vous avez pu vous en rendre compte par vous-même en regardant la vidéo dans laquelle Barack Obama parle comme Donald Trump [1]. Nous allons découvrir dans cet article comment utiliser les réseaux génératifs antagonistes, pour créer des images ou vidéos truquées, communément appelées deepfakes.